US009118679B2

a2z United States Patent (10) Patent No.: US 9,118,679 B2
McClain et al. 45) Date of Patent: *Aug. 25, 2015
(54) ANALYTICS DATA COLLECTION WITH (52) US.CL
LOW INTEGRATION COST FOR DYNAMIC CPC ..o HO4L 67/10 (2013.01); GOGF 9/546
MESSAGE PASSING SYSTEMS (2013.01)
(58) Field of Classification Search
(71) Applicant: INTROSPEX, INC., Monarch Beach, None
CA (US) See application file for complete search history.
(72) Inventors: Fred W. McClain, Cardi.ff,. CA (US); (56) References Cited
Stephen Mickelsen, Encinitas, CA (US);
Vishweshwar Ghanakota, Cardiff, CA U.S. PATENT DOCUMENTS
US
US) 5,581,684 A * 12/1996 Dudziketal. 715/708
. . . 6,112,280 A * 82000 Shahetal. 7117129
(73) ASSlgnee' Introspex Incorporated5 Cardlff’ CA 2006/0190924 Al * 8/2006 Bmenlng et al' """"""" 717/104
Us) 2007/0234289 Al 10/2007 Naroff ef al.
2011/0238496 Al 9/2011 Gurbuxani et al.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days. Chisnall D., “A Modern Objective-C Runtime” Nov. 8, 2007, pp. 1-5.
This patent is subject to a terminal dis- Cortonesi M., et al “Objective-C Frameworks to Eiffel Converter”,
claimer. 2010, p. 1-61.
(21) Appl. No.: 14/531,135 * cited by examiner
(22) Filed: Nov. 3, 2014 Primary Examiner — Andy Ho
Assistant Examiner — Abdou Seye
(65) Prior Publication Data (74) Attorney, Agent, or Firm —1loza & Loza, LLP;
US 2015/0120801 A1 Apr. 30, 2015 Anthony G. Smyth
Related U.S. Application Data 67 ABSTRACT
(63) Continuation of application No. 13/707,508, filed on A method, an apparatus, and a computer program Product
Dec. 6.2012 Pat. No. 8.910.190 which capture and use analytics data relating to the internal
ec. 6, » low Tat. No. 6,715,150, activity of software programs executing in a message-passing
(60) Provisional application No. 61/567,592, filed on Dec. runtime environment, such as that provided by Objective-C.
6,2011. The invention exploits the well documented interfaces of
these environments together with their dynamic runtime
(51) Int.ClL capabilities to insert data collection and analysis code into an
GOG6F 9/144 (2006.01) application without modification of the target application.
HO4L 29/08 (2006.01)
GOG6F 9/54 (2006.01) 20 Claims, 13 Drawing Sheets
600
4 main:
i Seit
4 L : 610 612 614
" “<« } |
< Jmp: Sab2
: : Sel-1 mp2 i
Sel2 tmp-1
Sel-3 fmp-3
Set-4 inp-4
Runtime Table Maps Selector o

implementation Poinlers

US 9,118,679 B2

Sheet 1 of 13

Aug. 25,2015

U.S. Patent

011

vo1

BEYNEIN

>

I9p1A0I]

J01AI0S /1adoToAd(q

901

/v 01

0061

U.S. Patent Aug. 25, 2015 Sheet 2 of 13 US 9,118,679 B2

200\
202 \ 212
Source Code —\ Object Code
(hello.m) (analytics.m)
204 214
—\ Object Code \ Object Code
(hello.o) (analytics.o)
206
—\ Executable Code [«
(hello.app) |«
210 \
Libraries, Frameworks
and Other Sources of
Relocatable Code Blocks
208 —\ '

Running Application in
device memory

FIG. 2

U.S. Patent

300

320

322

Aug. 25, 2015 Sheet 3 of 13

ptr-1 e
ptr-2

ptr-3 |
ptr-4

304

328

324

326

BI0UE: SOV 000 SO0 O 4

FIG. 3

US 9,118,679 B2

US 9,118,679 B2

Sheet 4 of 13

Aug. 25,2015

U.S. Patent

A K|

(" JureNuoned | ddy SN |fmm—

(o<y

(- yurewr u

(9Ty

/f. 144

@ﬁwoﬂ QUMONVV 4 T

Iopeo] 9]GeINodxg

»

/.. 444

uolezI[eIIuI
swInunI N-0A139{q0)
pue dmos ssosoid

,(wr

oty

\| yor

Z

awnuny J-2a109[G0 _

uoneonddy N-aa1302(q0

/(, wr

0or

US 9,118,679 B2

Sheet 5 0of 13

Aug. 25,2015

U.S. Patent

S Ol

SIUID] uOnEILSWdUY
0} 10150195 sdup SIgR] Suwnuny

il

H-N30]

OO0

2188 “mﬁm m//

S

j-og rduwp |
eyl |

0¢

bo0s

US 9,118,679 B2

Sheet 6 of 13

Aug. 25, 2015

U.S. Patent

9 "OId

SIS0 UORBIUSWSIdUY
01 J01085% sde 2108 swgung

(4%

809

bnnnnry
v
e
-~
e
-
=

-400(q

210 :duip |

1o rdwp |
urew |

09

009

U.S. Patent Aug. 25, 2015 Sheet 7 of 13 US 9,118,679 B2

Sel-2
Imp-2

708
_\
710

_\

FIG. 7

702 w
Sel-1
8
]
L]
]
Imp-1

704
._\
706

__\

700

U.S. Patent

800

\

Aug. 25,2015

Sheet 8 of 13

Framework

Description

Feidlenrate

Adidresaionk

SRR

rafimrrices

s tand Ay

& Sy 2w
Semurity

ks

Accslerated math and DSP functions.

Interfaces for managing access 10 & user's system accounts.
Functions for aceessing the user’s contacts database directly.
Classes for displaying the peaple picker-and edtor interfaces.
Inserfaces For audio stream data and for playing and recording audio,
interfaces for loading and using audio units.

interfaces For plaving and recording audin and videa.

Interfaces for accessing the network via Wi-Fi and cellular radios.
Provides the Core Audio data types.

Access fow-power Sluetooth hardware.

interfaces for managing vour application”s data madel

Provides fundamental software sewvices.

Interfaces for Quartz 20,

interfaces for manipulating video and still images.

interfaces for getermining the usecs logcation,

Low-~tevel routines for manipulating audio and video,

Low-level routines for handling MIDH data,

interfaces for accessing acceleromeater and gyro data,

Routines for acgessing telephony-related information,

Text layout srdd rendedmng engine.

Low-~tavel routines for manipulating audio and video.

interfaces for accessing a user’s calendar svent duta,

Claszes for displaying the standard system calendar interfaces,
irterfaces for communicating with attached hardware accessories.
nterfaces for managing swings, collections.

interfaces for managing peer-to~peer connectivity.

Lttty classes for bullding complex OpenGL ES applications.
Classes for displaying advertisermaats in your application.
Classeas for ernbadding 2 map interface inte your application.
interfaces for playing full-screen video,

interfaces for compeosing and gueuing email messages,

Pefines the uniforn type identifiers (UT1s) supparted by the systern,
tnterfaces for downloading magazine and newspaper cortent,
Interfaces for Opendl, a cross-platform positional audio Hbrary.
interfaces for OpenGL ES.

The Core Animation intesfaces,

hverfaces for previewing files.

interfaces for managing centificates, keys, and trust policies,
interfaces for handling the financial transactions.

interfaceys for determining the network configuration of a device.
tnterfaces for sending tweets via the Twitter sendce,

Classas and methods for the iQ8S application user interface layer,

FIG. 8

US 9,118,679 B2

U.S. Patent Aug. 25, 2015 Sheet 9 of 13

200

US 9,118,679 B2

Preflighting a Request
+ ganfandisReguest:
Loading Data Synchronously
sensdifynohronousieguesti returningResponss ssrroyy
Loacimg Data Asynchmnousty

+ eonnestiondivhResgnest i delaysts
w@gaa«tv§%§@§aYa;
ReguestrdeiegaterstartDmpediataiy:

o3

;—-,

Stoppmg a Connection
Runibg;; {S{;:heduiing

~ gehedulainfbunboop s Tordods
- gnschadulefromRunloop: foy

Connection AUthEﬂUC&tiOﬂ

«~”ﬁ“ﬁﬁﬁ”1ﬁﬁ fan&ﬁt*-

: 2 ,
»«ﬁn%%acﬁaﬁﬁ*&zmaan@¢~.a?%@m“a@m ia%ahaﬁ§ang
- pmnnectionndidiecelveinthent iostionChallangs:

Cennectxon Data and Responses

- YT rion:didieseivebatas
e comnestion didiaonivelies §
e CICHELD wionrwdlideohaBespons

e
K

conneotioniwilisen &a@q“a&ts:=

Cannectson Completion
~ gonnestion:ddFelivishError:
- T iondidiinishioadings

FIG. 9

U.S. Patent Aug. 25, 2015 Sheet 10 of 13 US 9,118,679 B2
1000
1002
1004\“?{ NSURLConnection Objet:
\"wﬁ initwithRequest:delagate: Impl
| e 1008
1006 | | ——
e insert new Selector
g , and Associated
—— 1 Code Block
(1020)
;E NSURLConnection Object:
{initwWithRequest:delegate: Impl
1010 . i~
R & Exchange
;bmﬂinitWithRequ&st:&e&ega&gifmpz implementation
B " 1012 1 Pointers
po— —— " 1014
4 NBURLCannection Object:
4 inivwithReguestrdelegalgs Imp2
» e 1016

e

f§hmhinitwithﬁequest:delegg&ii}mgz

1618

U.S. Patent Aug. 25, 2015 Sheet 11 of 13 US 9,118,679 B2

1100
1102
1104 \M Users Delegate Object:
;?onnactxon:didRec&iv&ﬁata: Im?1“-~L
4. - 1108
1 {imp-1 ?
1166 s
T insert new Selector
- I B - and Associated
B 1 Code Biock
(1130)
4 Users Delepate Objact:
jconnectionididieceivebatas Impl
IS I B &
\NQ bm_connectionsdidReceivebata: Imp2 | Exchange
i implementation
e~ 5 \\M M2y pointers
S — R TY P | |)

4 Users Delegute Object:

§ connectionrdidRecsivelatas Inpl .

20w - 1116
1 bm_connection:didReceivenata: Impl |

- 1118

FIG. 11

US 9,118,679 B2

Sheet 12 of 13

Aug. 25,2015

U.S. Patent

(977D

rzzp

(zzzn)

J01ARYQq ¥ AJIpow 0]
2OIASP JOST 2y asne))

207AID JASH
O} JO] HOILWIOTHI
feuoneIado dAINdIY

001A0p 1251
2 03 A1RIqI] © 9PIAOI]

1L 'OId

(441

CliT40)

oz

(zoz1)

10302]3§ UOHIUN]
o} UO Paseq uonoUnj
SOonAfEuE UE 21Nn0a% 5

10120}9S UCHOUN] 0}
Furpuodsoi10d 1uod
uoneuowa|dun
ue ofuey)

so[npow
Jo Areiqrj e urejuie N

US 9,118,679 B2

Sheet 13 of 13

Aug. 25,2015

U.S. Patent

PIET
}SOF]

(441

RRTNENN
18007

8TL1

0cel
IOAISS

¢l "DIA

SIALI(]

8I€I SOCT 121191
hinEaliis
) JOSSA001J 10883001
UOHBIUNWWIO))
70¢1 €01
sng
00¢t 80¢T 90¢¥
J01ADD 03RI0IQ Arowapy
YNIAIP ISBIOLT WOd urepy

WIISAS SUISSAdOIY

91tl
AJOWISIN]

utep

14841
921AD
agermg

00¢l

US 9,118,679 B2

1
ANALYTICS DATA COLLECTION WITH
LOW INTEGRATION COST FOR DYNAMIC
MESSAGE PASSING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, and claims the benefit
of U.S. patent application Ser. No. 13/707,508, filed on Dec.
6,2012, whichisnow U.S. Pat. No. 8,910,190, which claimed
priority from U.S. Provisional Application Ser. No. 61/567,
592 filed on Dec. 6, 2011, and which is expressly incorpo-
rated by reference herein in its entirety.

BACKGROUND

1. Field

The present disclosure relates generally to message pass-
ing computer programming languages and systems, and more
particularly, to systems and methods for instrumenting,
observing, analyzing and reporting behavior of message pass-
ing computer systems.

2. Background

Computer programs deployed on Internet servers, personal
computers and mobile devices are playing an increasing role
in a broad spectrum of commerce and social activities. It has
become increasingly important for the producers of these
software programs to understand the performance of'its appli-
cations and the behavior of users of those applications. Soft-
ware manufacturers are challenged to deploy reliable and
effective programs while responding to rapid market changes.
Detailed data analysis of software programs throughout the
life cycle stages of development, debugging, deployment,
upgrading, marketing, operations and end-of-life has become
important to the overall success of many software applica-
tions.

Conventional solutions require the integration of tracking
software within the target application. This tracking software
in turn generates the data required to understand how a prod-
uct is being used by its customers, and the nature of software
bugs and other computing environmental concerns. While the
benefits realized from such analytics data are large there are
inherent problems associated with the conventional solution.
The collection of analytics data typically requires the addition
of tracking and reporting software throughout the target
application. The process requires access to and modification
of the applications source code. The requirements for the
tracking software generally require the cooperation of mul-
tiple groups and individuals within an organization adding
further weight to implementation complexity. This detailed
instrumentation increases the scope and cost of the software
engineering process all the while reducing responsiveness to
market forces.

Moreover, when instrumented applications are deployed,
conventional solutions require wholesale replacement of an
application to modify the nature of analytics data collected.
Conventional solutions tend to have a ‘one size fits all’
approach and, unless highly customized applications are
developed to cover the differing data collection requirements,
all stake holders in the software lifecycle must typically be
satisfied with a static set of analytics data. These restrictions
make it difficult to quickly tune the data collected to different
user communities or drill down into areas of interest identi-
fied by previously collected data or changes in the market.

Traditional computing environments create a fixed linkage
between the code instructions to be executed at the time of
compilation and linking. This fixed nature of traditional

10

15

20

25

30

35

40

45

50

55

60

65

2

applications makes it difficult to modify or change the behav-
ior of an application after it has been built, thereby necessi-
tating that any instrumentation for collection of analytics data
be built directly into application.

SUMMARY

In an aspect of the disclosure, systems, methods and appa-
ratus are provided. The apparatus comprises one or more
processing systems configured to maintain a library of mod-
ules in a non-transitory storage medium, change an imple-
mentation pointer maintained by the processing system, the
implementation pointer corresponding to a function selector
of'a target function, and store the initial content of the imple-
mentation pointer in association with the at least one analytics
function such that the processing system is caused to execute
the target function after executing the at least one analytics
function. The library of modules may include code for caus-
ing a processing system to perform a plurality of analytics
functions, each analytics function being associated with a
function selector. An initial content of the implementation
pointer may be changed such that the processing system is
caused to execute at least one analytics function of the plu-
rality of analytics functions instead of the target function. The
implementation pointer may be changed after the processing
system has begun executing an application associated with
the implementation pointer.

In an aspect of the disclosure, the code for causing the
processing system to perform a plurality of analytics func-
tions may be added to the library of modules after the pro-
cessing system has begun executing the application.

In an aspect of the disclosure, the at least one analytics
function may comprise a data collection function configured
to update an execution history of the target function, the
execution history counting each execution of the target func-
tion. At least one analytics function may include a cataloging
function configured to characterize each execution of the
target function based on one or more parameters provided to
the target function. The cataloging function may be config-
ured to characterize at least one result of each execution of the
target function.

In an aspect of the disclosure, the processing system may
be configured to change one or more other implementation
pointers maintained by the processing system. The one or
more other implementation pointers may be changed by
modifying an operational aspect of the application. The
operational aspect of the application may relate to a menu
provided to a user of the apparatus, a behavior of the appara-
tus, and/or power management of the apparatus.

In an aspect of the disclosure, At least one analytics func-
tion comprises a communications function that transmits
information related to one or more operational aspects of the
apparatus to a network. The information related to one or
more operational aspects of the apparatus may include an
analysis of user behavior associated with the apparatus. The
information related to one or more operational aspects of the
processing system may include an alert related to an error
condition caused by the application. The alert may comprise
include an execution history of the target function.

In an aspect of the disclosure, systems, methods and appa-
ratus are provided. The apparatus comprises one or more
processing systems configured to provide a library of analyt-
ics functions to a computing device, receive an execution
history corresponding to one or more functions of the appli-
cation, and cause the computing device to modify a behavior
of'the application while the application is running. The library

US 9,118,679 B2

3

of analytics functions may include functions configured to
instrument an application that is currently running on the
computing device

In an aspect of the disclosure, the behavior of the applica-
tion relates to an error condition detected in the application
based on the execution history, a menu operation of the com-
puting device, a user experience associated with the user
device or another functional aspect of the computing device.

In an aspect of the disclosure, the processing system may
cause the computing device to modify the behavior of the
application by causing the application to display an adver-
tisement on the computing device. The application is selected
based on the execution history.

In an aspect of the disclosure, the processing system may
cause the computing device to modify the behavior of the
application by causing the computing device to modify a
runtime version of the application without modifying a stored
version of the application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating an example of a network
environment.

FIG. 2 is a flowchart illustrating a method for including
software libraries into an application on a processing device.

FIG. 3 illustrates relocatable code blocks and associated
pointers.

FIG. 4 illustrates linker/loader operation.

FIG. 5 depicts indirection layer enabled by message pass-
ing systems such as Objective-C.

FIG. 6 illustrates Objective-C enables runtime exchange of
implementation code blocks.

FIG. 7 illustrates Implementation code block exchange.

FIG. 8 is a partial list of available frameworks.

FIG. 9 illustrates interface points for typical Framework
(NSURLConnection).

FIG. 10 illustrates code insertion for a Connection object.

FIG. 11 illustrates code insertion into users delegate object
for a Connection.

FIG. 12 is a flow chart of a method of code block exchange.

FIG. 13 is a simplified block schematic illustrating a pro-
cessing system employed in certain embodiments of the
invention.

DETAILED DESCRIPTION

The detailed description set forth below in connection with
the appended drawings is intended as a description of various
configurations and is not intended to represent the only con-
figurations in which the concepts described herein may be
practiced. The detailed description includes specific details
for the purpose of providing a thorough understanding of
various concepts. However, it will be apparent to those skilled
in the art that these concepts may be practiced without these
specific details. In some instances, well known structures and
components are shown in block diagram form in order to
avoid obscuring such concepts.

Several aspects of the invention will now be presented with
reference to various apparatus and methods. These apparatus
and methods will be described in the following detailed
description and illustrated in the accompanying drawing by
various blocks, modules, components, circuits, steps, pro-
cesses, algorithms, etc. (collectively referred to as “ele-
ments”). These elements may be implemented using elec-
tronic hardware, computer software, or any combination
thereof. Whether such elements are implemented as hardware

10

15

20

25

30

35

40

45

50

55

60

65

4

or software depends upon the particular application and
design constraints imposed on the overall system.

By way of example, an element, or any portion of an
element, or any combination of elements may be imple-
mented with a “processing system” that includes one or more
processors. Examples of processors include microprocessors,
microcontrollers, digital signal processors (DSPs), field pro-
grammable gate arrays (FPGAs), programmable logic
devices (PLDs), state machines, gated logic, discrete hard-
ware circuits, and other suitable hardware configured to per-
form the various functionality described throughout this dis-
closure. One or more processors in the processing system
may execute software. Software shall be construed broadly to
mean instructions, instruction sets, code, code segments, pro-
gram code, programs, subprograms, software modules, appli-
cations, software applications, software packages, routines,
subroutines, objects, executables, threads of execution, pro-
cedures, functions, etc., whether referred to as software, firm-
ware, middleware, microcode, hardware description lan-
guage, or otherwise. The software may reside on a computer-
readable medium. A computer-readable medium may
include, by way of example, a magnetic storage device (e.g.,
hard disk, floppy disk, magnetic strip), an optical disk (e.g.,
compact disk (CD), digital versatile disk (DVD)), a smart
card, a flash memory device (e.g., card, stick, key drive),
random access memory (RAM), read only memory (ROM),
programmable ROM (PROM), erasable PROM (EPROM),
electrically erasable PROM (EEPROM), a register, a remov-
able disk, a carrier wave, a transmission line, and any other
suitable medium for storing or transmitting software. The
computer-readable medium may be resident in the processing
system, external to the processing system, or distributed
across multiple entities including the processing system.
Computer-readable medium may be embodied in a computer-
program product. By way of example, a computer-program
product may include a computer-readable medium in pack-
aging materials. Those skilled in the art will recognize how
best to implement the described functionality presented
throughout this disclosure depending on the particular appli-
cation and the overall design constraints imposed on the
overall system.

Certain embodiments provide systems, apparatus and
methods that enable a minimally invasive and low cost
method for collection and analysis of data associated with
processing systems, computing environments and software
programs operating on processing systems and in a variety of
computing environments.

FIG. 1 is a conceptual diagram illustrating an example of a
computing environment 100 that may employ certain aspects
of'the present invention. A developer 102 may produce appli-
cations that can be distributed to some combination of user
equipment such as personal computer 124, mobile device 120
such as a mobile phone or other wireless device, and appli-
ances such as television 122. User equipment may comprise
any personal processing device, including gaming devices,
communications devices, portable computing platforms,
navigation systems, media players and so on. Appliances may
be any device that performs a prescribed function and can
include televisions, kitchen equipment, cable, satellite,
streaming and other set-top devices, media players, home
automation and/or security systems, automotive control and/
or entertainment systems, and the like.

Applications provided by developer may involve the pro-
vision or receipt of services, typically provided by a server
104, which may be connected through a network such as the
Internet 108. User equipment 120, 122 and/or 124 may be
connected to other user equipment 120, 122 and/or 124 and/or

US 9,118,679 B2

5

to one or more network server 104 through the Internet or
another network. Connections to networks may involve a
wireless network, typically using a base station 110 that pro-
vides access to a wide area network, such as the Internet 108.

In certain embodiments, developers and/or service provid-
ers 102 may distribute applications and continue to monitor
the performance of the applications and user equipment 120,
122 and 124 on which the applications are installed. In some
embodiments, applications may be instrumented while
executing on the user equipment 120, 122 or 124 such that
performance and other information is collected and commu-
nicated to a server 104, which may analyze, aggregate, or
otherwise process the data from one or more devices 120, 122
or 124. Applications may be instrumented to assist debug and
development of the applications, to monitor performance of
user equipment 120, 122 and 124, to profile use of the appli-
cation or user equipment 120, 122 or 124 and to enable
delivery of customized and optimized content based on his-
tories of usage of the applications. In one example, instru-
mentation may be used to determine menu options and fea-
tures that are frequently or infrequently used such that user
options may be modified to reflect user behaviors. In another
example, customer support operations may add instrumenta-
tion “on-the-fly” to assist in detecting causes of current fail-
ures or problems associated with an application.

Certain embodiments of the invention may be deployed in
message-passing computing environments. One example of a
message-passing computing environment comprises certain
computing devices, and/or eco-systems produced and mar-
keted by Apple Inc. Such devices and systems may employ
message-passing operating systems and certain software
applications may be produced using compilers and other
development tools employed by developers 102. For the pur-
poses of this discussion, the Objective-C programming lan-
guage, its runtime environment and related development tools
are described in detail as an example of a message-passing
programming and/or runtime environment. However, the
principles disclosed may be applied to any suitable message-
passing programming and runtime environment and/or to
certain programming and runtime environments that do not
use message-passing in the conventional sense.

Systems and applications that employ message-passing
may delay final linking between functional code blocks and
corresponding function pointers until runtime. The dynamic
nature of message-passing systems and applications may be
leveraged to provide a mechanism that can update applica-
tions at runtime by inserting new code into the application at
runtime. The new code may include modules and/or libraries
that can capture, communicate and use analytics data relating
to the internal activity of software programs executing in the
message passing runtime environment of Objective-C.

In some embodiments, certain capabilities of message-
passing systems may be exploited to insert data collection and
analysis code into an application during the application’s
launch process. Certain applications designed for message-
passing environments make use of extensive and well docu-
mented frameworks and libraries. Certain embodiments of
the invention exploit information acquired from Objective-C
interfaces to gain knowledge of the underlying intent and/or
purpose of collected data.

In certain embodiments, code blocks are provided for
inclusion in applications to enable data collection, data analy-
sis functions and user interface elements. Certain of the code
blocks may be provided in a compiled library and inserted
into a preexisting application while the application is running.
Accordingly, a software developer may collect performance,
usage and related analytics data to facilitate continued devel-

10

20

25

30

35

40

45

50

55

60

65

6

opment and/or monitoring of applications without modifying
the source code of deployed applications. The impact of the
data collection on an executing application can be minimized
through on-the-fly customization of the application that
allows targeted data collection to be added and removed
according to data collection needs. In a networked environ-
ment a profile of data collected can be updated remotely. In
some embodiments, the collected data may be processed,
aggregated or otherwise consolidated to reduce the volume of
collected data collected. In one example, consolidation may
be performed around a plurality of predefined or selectable
data points.

FIG. 2 comprises a flow diagram 200 that illustrates a
compiling process, performed by compiler and other software
development tools. Source code 202 may be input to the
compiler which may produce relocatable object code 204
from the source code 202. Source code 202 may be written for
Objective-C or another message-passing system. The object
code 204 may then be assembled by a linker to produce an
executable file 206, which typically includes portions of
libraries and frameworks 210 with object code 204. The
executable file 206 may be transferred by a loader to storage,
such as main memory of a device on which the loaded appli-
cation 208 is to be executed. Third-party source code 212 may
be compiled into relocatable object code 214. In conventional
systems, the linker may merge the relocatable object code 214
with the relocatable code 204 generated from the primary
source code 202. This merging enables code blocks generated
by the third-party source code to be referenced by the primary
source code without a requirement for the third-party source
code to be directly incorporated into the primary source code.

FIG. 3 illustrates an example in which four relocatable
code blocks 302 are associated with corresponding pointers
304. The associated object code 113 is shown in more detail
at 320. Function calls 322 and 324 may be created by a
compiler which associates function calls 322 and 324 with
placeholder pointers (labeled “xxxx” and “yyyy”). During
the load/link process these placeholder pointers may be
replaced with pointers to the actual addresses of the relocat-
able code blocks as illustrated by function calls 328 and 330.
Conventional (e.g. non message-passing) systems may
resolve relocatable code block references in this manner.

In certain embodiments of the invention, an Objective-C or
other message-passing system may be employed in which
resolution of function calls, which may be referred to herein
as “method invocations,” is deferred until runtime. The link-
age between the method invocation and the code block
executed can be changed during application execution. Cer-
tain embodiments take advantage of this property to insert
custom code blocks into a running application.

FIG. 4 is a diagram 400 illustrating the relationship
between an Objective-C application 402 and an Objective-C
runtime component 404 according to certain aspects of the
invention. Each application 402 may have its own dedicated
copy of the runtime component 404. The runtime component
404 performs a variety of low level services for the applica-
tion, including the copying and/or loading of relocatable code
blocks from the executable image. Additionally, the runtime
component 404 may be used to move relocatable code blocks
between objects of an application, and may provide methods
for manipulating pointers to these code blocks.

The flow diagram 420 shows, in more detail, a process for
application startup in an Objective-C system. At startup 422,
the runtime component 404 initiates the loading of code
blocks into memory that is usable at runtime. At 424, a runt-
ime executable loader may accomplish loading through
execution of a method, such as the “+load” method 428 on

US 9,118,679 B2

7

every object in the application. In turn, the +load method 428
may copy relocatable code blocks associated with a given
object into memory. A single reference in the application
program may cause the execution of the +load method 428 for
any Framework or library included in an Objective-C appli-
cation. Accordingly, this +load method 428 may be used to
insert code blocks from the library into the target application.
Since this occurs prior to execution of the main application
430, and Objective-C startup, the behavior of the application
can be modified from its behavior at initial startup by code
insertion.

In one example, a code extension mechanism named “Cat-
egories” provided by Objective-C may be used to extend the
behavior of an existing object at Runtime. The present inven-
tion creates additional Categories for selected set of Objec-
tive-C Frameworks and Libraries. These additional Catego-
ries may include custom code for tracking and analysis of the
Frameworks and Libraries extended by the custom Catego-
ries. FIG. 8 includes a table 800 listing a subset of certain
Objective-C Frameworks employed in the Apple® iOS®
operating system. Additional libraries, not shown, may be
provided for Objective-C and/or other message-passing sys-
tems, and tracking code may be inserted in these libraries
using through Categories. Typically, tracking code may be
inserted in any library provided the library is adequately
documents.

FIG. 5 and is a diagram 500 illustrating an example of an
Objective-C implementation according to certain aspects of
the invention. The term Selector (or “Sel”) is used to indicate
the name of a function to be invoked, and the word Imple-
mentation (or “Imp”) is used to indicate a pointer to a block of
relocatable code blocks to be executed. The executable code
provides a reference 510 to each Sel 502, 504 to be invoked.
The Runtime component 404 may maintain a table 508 map-
ping each Sel 510 to an Imp pointer 512. For example, Sel-1
502 and Sel-2 504 may be referenced in the executable con-
taining relocatable blocks 514. Table 508 illustrates a map-
ping from Sel-1 502 and Sel-2 504 to Implementation point-
ers Imp-1 and Imp-2, which in turn point to relocatable code
blocks Block-1 and Block-2 respectively.

FIG. 6 is a diagram 600 illustrating an example of an
Objective-C implementation according to certain aspects of
the invention. In certain embodiments, the Objective-C Runt-
ime may be used to exchange Implementation pointers in the
Runtime table 608. As depicted, the Imp pointers 612 refer-
enced by Sel-1 and Sel-2 are swapped in table 608, thereby
enabling a change in behavior of the application. The Imp
pointer 612 may be changed to point to a different code block.
For example, the Imp pointer for Sel-2 604 may be changed to
reference a code block derived from a library that may include
analytics code, or that may change behavior of a user inter-
face. Certain embodiments perform this exchange in the
execution of the +load method of the Categories associated
with each Framework to be analyzed.

FIG. 7 is a diagram illustrating an example of pointer
modification in more detail. The diagram 700 illustrates how
anexchange (depicted in FIG. 6, for example) can result in the
insertion of new code blocks in the program execution. Code
execution flow 702 may cause Sel-1 704 to be invoked and,
when Imp-1 706 and Imp-2 708 have been exchanged in table
608, the invocation of Sel-1 704 passes control to the code
block pointed to by Imp-2 710, rather than to the original code
block pointed to by Imp-1 706. The code block pointed to by
Imp-2 710 may comprise relocatable code from a library, and
may include instrumentation code, code that provides addi-
tional or different functionality to the application, and so on.
In some embodiments, the library may comprise custom code

20

30

40

45

8

used to track and analyze the target application. The code
block code block pointed to by Imp-2 710 may include a
reference to Sel-2 708, and Sel-2 706 may now invoke pointer
Imp-1 706. Since the code block code block pointed to by
Imp-1 706 is the original function associated with Sel-1,
execution proceeds according to the original intent.

In certain embodiments, additional care is taken in the code
block pointed to by Imp-2 710 to avoid disrupting the flow of
the original application. Since this code block is effectively
hidden from the original application, the application may be
developed to avoid retaining or altering any objects of the
original application. Developers employing certain tech-
niques disclosed herein typically avoid creating code that
generates or requires a large memory footprint and/or exces-
sive CPU usage.

Certain aspects of the present invention are applicable to
any Framework provided the Framework is documented, or
otherwise discernible. For example, Frameworks may be
monitored provided data collection specifics related to Objec-
tive-C interfaces to the Frameworks are documented or oth-
erwise known. FIG. 8 includes examples of Frameworks that
are well-documented and that can be fully instrumented with
techniques disclosed herein, and typically without the coop-
eration of the original author of the Frameworks.

By way of example, FIG. 9 illustrates interface documen-
tation for an “NSURILConnection” object, which is amember
of the iOS Foundation framework. The ‘initWithRequest:
delegate” method shown in FIG. 9 may be used to create a
new NSURILConnection and to assign a “delegate” to the
connection. In some embodiments, an Imp pointer associated
with ‘initWithRequest:delegate” may be switched with an
Imp pointer to a block of code from a library, such as an
analytics or other library, and assigned a new Selector
‘bm_initWithRequest:delegate.” In this manner control is
passed to the inserted code block from the library when any
code inthe original application uses the Sel ‘initWithRequest:
delegate.” The complete documentation associated with FIG.
11 enables the code block in library to have full knowledge of
the meaning of the parameters passed in the ‘initWithRe-
quest:delegate,” enabling the code block of library to extract
and record all desired associated details of the call. After
collecting the data code block from library then reference the
new Sel “bm_initWithRequest:delegate,” returning control
back to the flow intended in the original application.

FIGS. 10 and 11 depict instrumentation of an object not in
the documented frameworks. FIG. 10 depicts instrumentation
of'an object from the documented Foundation framework and
FIG. 11 depicts instrumentation of an object not in the docu-
mented frameworks, namely the ‘delegate’ specified in the
“initWithRequest:delegate” method of FIG. 10. The docu-
mentation may specify that the “delegate” object must sup-
port certain callbacks, and certain aspects of the present
invention may be applied to the “delegate” object. This
enables data in object outside of standard or documented
frameworks to be tracked and collected. Specifically FIG. 11
illustrates how the “connectionDidReceiveData:” method
can be tracked.

Other frameworks identified in FIG. 8 can be instrumented
using techniques similar to those used for NSURLConnec-
tion, thereby enabling the present invention to track, analyze
and report on how a given application makes use of the
underlying documented frameworks in an Objective-C or
other message-passing system. In certain embodiment, an
application can be configured to avoid using the supplied
frameworks, and thereby avoid being tracked by the disclosed
techniques. However, many applications use Frameworks

US 9,118,679 B2

9

and can therefore be tracked and analyzed by the present
invention with little to no requirement for modifying the
application source code base.

In some embodiments, a library may be provided that com-
prises code blocks for instrumenting some or all of the meth-
ods in the Framework. Individual code blocks from the library
may be selectively activated or deactivated based on configu-
ration data maintained by the Library, typically in a file
embedded in the Library. This file can, in turn, be remotely
updated in a networked environment, thereby enabling indi-
vidual instrumentation code blocks to be enabled or disabled
remotely.

In some embodiments, code blocks instrumenting a frame-
work may aggregate data from multiple method calls. The
“connectionDidReceiveData” method depicted in FIG. 11
may be called hundreds of times and an author of the code
block may prefer to simply sum the byte count of the data
received and generate one aggregate report rather than report-
ing each individual method call.

In certain embodiments, the behavior of an application
installed and executed on user equipment may be modified to
perform functions that were beyond the original intent or
purpose ofthe applications. For example, an original software
developer when writing the code for the application may not
have anticipated a need or desire identified by a user of the
application. According to certain aspects of the invention, the
Application may be modified “on-the-fly” to perform addi-
tional or different functions, without the need to modify the
original source code. A change in behavior may be triggered
by affirmative request of the user of the Application, a service
provider that provides the Application, the user equipment,
networking services (e.g. wireless networking) and/or a net-
work-based or cloud-based application. A change in behavior
may be automatically triggered based on information gath-
ered by instrumentation modules. In one example, advertise-
ments may be inserted into a user display. In another example,
the user experience may be modified by altering certain
“touch-and-feel” behaviors and/or appearances of user inter-
face elements, including buttons, images, etc. The original
software developer need not provide any features to enable
such modifications. In one example, the internal parameters
describing a broad selection of user interface elements may be
accessed through the operating system, and/or runtime com-
ponent 404, or other elements of a message-passing system.
These parameters can be modified with an assurance that the
modifications will have a known and desired effect.

FIG. 12 includes a flow chart 1200 of a method of instru-
menting applications and/or moditying the application. The
method may be performed by a computing device such as a
mobile phone, a smart phone, a personal computer, an appli-
ance, or other device as desired.

At step 1202, a library of modules is received and/or main-
tained in a non-storage medium. The library may include
code for causing a processing system to perform a plurality of
analytics or other functions. Each analytics function or other
function may be associated with a function selector. The code
for causing the processing system to perform a plurality of
analytics functions may be added to the library after the
processing system has begun executing the application.

At step 1204, an implementation pointer maintained by the
processing system and corresponding to a function selector of
a target function may be changed. An initial content of the
implementation pointer may be changed such that the pro-
cessing system is caused to execute at least one of the plurality
of analytics functions instead of the target function. The at
least one analytics function may comprise a data collection
function configured to update an execution history of the

10

15

20

25

30

35

40

45

50

55

60

65

10

target function. The execution history may count or otherwise
account for each execution of the target function. The at least
one analytics function may comprise a cataloging function
configured to characterize each execution of the target func-
tion based on one or more parameters provided to the target
function. The cataloging function may characterize at least
one result of each execution of the target function. The at least
one analytics function may comprise a communications func-
tion that transmits information related to one or more opera-
tional aspects of the computing device to a network. The
information related to one or more operational aspects of the
computing device may include an analysis of user behavior
associated with the computing device. The information
related to one or more operational aspects of the computing
device may include an alert related to an error condition
caused by the application. The alert includes the execution
history.

At step 1206, the initial content of the implementation
pointer may be stored in association with the at least one
analytics function such that the processing system is caused
to execute the target function after executing the at least one
analytics function. The implementation pointer may be
changed after the processing system has begun executing an
application associated with the implementation pointer.

In some embodiments, one or more other implementation
pointers maintained by the processing system is changed such
that an operational aspect of the application. The operational
aspect of the application may relate to one or more of a user
experience associated with the computing device and a
behavior of the computing device.

FIG. 12 includes a flow chart 1220 of a method of instru-
menting applications and/or modifying the application. The
method may be performed by a network server, or other
computing device.

At step 1222, a library is provided to a user device, which
may comprise a computing device. The library may comprise
analytics functions including functions configured to instru-
ment a currently running application on the computing
device.

At step 1224, operational information, which may include
analytics data, corresponding to one or more functions of the
user device and/or the application is received.

At step 1226, the user device is caused to modify a behavior
of'the application based on the analytics data. The user device
maybe caused to take an action by exchanging one or more
messages, commands, application data, libraries and/or
library components with the user device. Such exchange may
be facilitated by an agent provided to the user device that is
adapted to modify a Runtime table 608 (see FIG. 6). The
agent may be provided as a module of an operating system, a
runtime component 404 (see F1G. 4), or the application or one
of'its libraries.

Modifying the behavior of the application may relate to an
error condition detected in the application based on the opera-
tional information and the behavior may be modified by cor-
recting the error condition or other malfunction. The behavior
of the application may relate to a menu operation of the
computing device, and may involve modifying a user expe-
rience associated with the user device or the application. The
user experience may be defined by one or more of a touch and
feel, a set of operational preferences, a sequence of operation,
a power usage, a menu layout, and other interface elements.

In some embodiments, causing the computing device to
modify the behavior of the application comprises causing the
application to display an advertisement on the computing
device based on the analytics data or by command of a net-
work operator or service provider.

US 9,118,679 B2

11

In some embodiments, causing the computing device to
modify the behavior of the application comprises causing the
computing device to modify a runtime version of the appli-
cation without moditying a stored version of the application.

In some embodiments, the execution history is combined
with corresponding execution histories received from a plu-
rality of computing devices to obtain an aggregated history.
The behavior of the application may be modified based on one
or more of the execution history and the aggregated history.
For example, advertisements may be provided based on user
menu selections. In another example, an error condition may
be diagnosed based on the aggregated history corresponding
to multiple user devices.

System Description

Turning now to FIG. 13, certain embodiments of the inven-
tion employ a processing system that includes at least one
processing system 1300 deployed to perform certain of the
steps described above. Processing systems may be a commer-
cially available system that executes commercially available
operating systems such as Microsoft Windows®, UNIX or a
variant thereof, Linux, 108, a real time operating system and
or a proprietary operating system. The architecture of the
processing system may be adapted, configured and/or
designed for integration in the processing system, for embed-
ding in one or more of a portable processing device, a com-
munications mobile device, an appliance, an image capture
system, a manufacturing/machining system, a graphics pro-
cessing workstation, etc. In one example, processing system
1300 comprises a bus 1302 and/or other mechanisms for
communicating between processors, whether those proces-
sors are integral to the processing system 1300 (e.g. 1304,
1305) or located in different, perhaps physically separated
processing systems 1300. Device drivers 1303 may provide
output signals used to control internal and external compo-
nents

Processing system 1300 also typically comprises memory
1306 that may include one or more of random access memory
(“RAM”), static memory, cache, flash memory and any other
suitable type of storage device that can be coupled to bus
1302. Memory 1306 can be non-transitory and/or tangible
storage media used for storing instructions and data that can
cause one or more of processors 1304 and 1305 to perform a
desired process. Main memory 1306 may be used for storing
temporary data such as variables and intermediate informa-
tion generated and/or used during execution of the instruc-
tions by processor 1304 or 1305. Processing system 1300 also
typically comprises non-volatile and/or non-transitory stor-
age such as read only memory (“ROM”) 1308, flash memory,
memory cards or the like; non-volatile storage may be con-
nected to the bus 1302, but may equally be connected using a
high-speed universal serial bus (USB), Firewire or other such
bus that is coupled to bus 1302. Non-volatile storage can be
used for storing configuration, and other information, includ-
ing instructions executed by processors 1304 and/or 1305.
Non-transitory storage may also include mass storage device
1310, such as a magnetic disk, optical disk, flash disk that
may be directly or indirectly coupled to bus 1302 and used for
storing instructions to be executed by processors 1304 and/or
1305, as well as other information.

Processing system 1300 may provide an output for a dis-
play system 1312, such as an LCD flat panel display, includ-
ing touch panel displays, electroluminescent display, plasma
display, cathode ray tube or other display device that can be
configured and adapted to receive and display information to
a user of processing system 1300. Typically, device drivers
1303 can include a display driver, graphics adapter and/or
other modules that maintain a digital representation of a dis-

10

15

20

25

30

35

40

45

50

55

60

65

12

play and convert the digital representation to a signal for
driving a display system 1312. Display system 1312 may also
include logic and software to generate a display from a signal
provided by system 1300. In that regard, display 1312 may be
provided as a remote terminal or in a session on a different
processing system 1300. An input device 1314 is generally
provided locally or through a remote system and typically
provides for alphanumeric input as well as cursor control
1316 input, such as a mouse, a trackball, etc. It will be appre-
ciated that input and output can be provided to a wireless
device such as a PDA, a tablet computer or other system
suitable equipped to display the images and provide user
input.

Processor 1304 executes one or more sequences of instruc-
tions. For example, such instructions may be stored in main
memory 1306, having been received from a computer-read-
able medium such as storage device 1310. Execution of the
sequences of instructions contained in main memory 1306
causes processor 1304 to perform process steps according to
certain aspects of the invention. In certain embodiments,
functionality may be provided by embedded processing sys-
tems that perform specific functions wherein the embedded
systems employ a customized combination of hardware and
software to perform a set of predefined tasks. Thus, embodi-
ments of the invention are not limited to any specific combi-
nation of hardware circuitry and software.

The term “computer-readable medium” is used to define
any medium that can store and provide instructions and other
data to processor 1304 and/or 1305, particularly where the
instructions are to be executed by processor 1304 and/or 1305
and/or other peripheral of the processing system. Such
medium can include non-transitory storage, transitory stor-
age and transmission media. Non-volatile storage may be
embodied on media such as optical or magnetic disks, includ-
ing DVD, CD-ROM and BluRay. Storage may be provided
locally and in physical proximity to processors 1304 and
1305 or remotely, typically by use of network connection.
Non-volatile storage may be removable from processing sys-
tem 1304, as in the example of BluRay, DVD or CD storage
or memory cards or sticks that can be easily connected or
disconnected from a computer using a standard interface,
including USB, etc. Thus, computer-readable media can
include floppy disks, flexible disks, hard disks, magnetic tape,
any other magnetic medium, CD-ROMs, DVDs, BluRay, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH/EEPROM, any other memory chip or car-
tridge, or any other medium from which a computer can read.

Transmission media can be used to connect elements of the
processing system and/or components of processing system
1300. Such media can include twisted pair wiring, coaxial
cables, copper wire and fiber optics. Transmission media can
also include wireless media such as radio, acoustic and light
waves. In particular radio frequency (RF), fiber optic and
infrared (IR) data communications may be used.

Various forms of computer readable media may participate
in providing instructions and data for execution by processor
1304 and/or 1305. For example, the instructions may initially
be retrieved from a magnetic disk of a remote computer and
transmitted over a network or modem to processing system
1300. The instructions may optionally be stored in a different
storage or a different part of storage prior to or during execu-
tion.

Processing system 1300 may include a communication
interface 1318 that provides two-way data communication
over a network 1320 that can include a local network 1322, a
wide area network or some combination of the two. For

US 9,118,679 B2

13

example, an integrated services digital network (ISDN) may
used in combination with a local area network (LAN). In
another example, a LAN may include a wireless link. Net-
work link 1320 typically provides data communication
through one or more networks to other data devices. For
example, network link 1320 may provide a connection
through local network 1322 to a host computer 1324 or to a
wide area network such as the Internet 1328. Local network
1322 and Internet 1328 may both use electrical, electromag-
netic or optical signals that carry digital data streams.

Processing system 1300 can use one or more networks to
send messages and data, including program code and other
information. In the Internet example, a server 1330 might
transmit a requested code for an application program through
Internet 1328. The received code may be executed by a pro-
cessor 1304 and/or 1305.

Additional Descriptions of Certain Aspects of the
Invention

The foregoing descriptions of the invention are intended to
be illustrative and not limiting. For example, those skilled in
the art will appreciate that the invention can be practiced with
various combinations of the functionalities and capabilities
described above, and can include fewer or additional compo-
nents than described above. Certain additional aspects and
features ofthe invention are further set forth below, and can be
obtained using the functionalities and components described
in more detail above, as will be appreciated by those skilled in
the art after being taught by the present disclosure.

Certain embodiments provide a method and apparatus for
capture and use of analytics data relating to the internal activ-
ity of software programs executing in the message passing
runtime environment of Objective-C. Certain embodiments
exploit the capabilities of Objective-C to insert data collec-
tion and analysis code into an application during the applica-
tion’s launch process. Modern applications designed for
these environments make use of extensive and well docu-
mented Frameworks and Libraries. Certain embodiments
exploit the information from these documented interfaces to
gain knowledge of the underlying intent of the data collected.

Certain embodiments enable the inclusion of code blocks
providing data collection, data analysis functions and user
interface elements to be pulled from a compiled library and
inserted into a pre-existing application while it is running.
This frees software developers from having to modify the
source code of an application in order to collect performance,
usage and related analytics data.

Certain embodiments incorporate methods for minimizing
the impact of the data collection on the executing application.
In a networked environment, certain embodiments of the
invention enable the profile of the data collected to be updated
remotely. Certain embodiments provide methods for reduc-
tion of the volume of data collected by consolidation of mul-
tiple data points.

It is understood that the specific order or hierarchy of steps
in the processes disclosed is an illustration of exemplary
approaches. Based upon design preferences, it is understood
that the specific order or hierarchy of steps in the processes
may be rearranged. The accompanying method claims
present elements of the various steps in a sample order, and
are not meant to be limited to the specific order or hierarchy
presented.

The previous description is provided to enable any person
skilled in the art to practice the various aspects described
herein. Various modifications to these aspects will be readily
apparent to those skilled in the art, and the generic principles

10

15

20

25

30

35

40

45

50

55

60

14

defined herein may be applied to other aspects. Thus, the
claims are not intended to be limited to the aspects shown
herein, but is to be accorded the full scope consistent with the
language claims, wherein reference to an element in the sin-
gular is not intended to mean “one and only one” unless
specifically so stated, but rather “one or more.” Unless spe-
cifically stated otherwise, the term “some” refers to one or
more. All structural and functional equivalents to the ele-
ments of the various aspects described throughout this dis-
closure that are known or later come to be known to those of
ordinary skill in the art are expressly incorporated herein by
reference and are intended to be encompassed by the claims.
Moreover, nothing disclosed herein is intended to be dedi-
cated to the public regardless of whether such disclosure is
explicitly recited in the claims. No claim element is to be
construed under the provisions of 35 U.S.C. §112, sixth para-
graph, unless the element is expressly recited using the phrase
“means for” or, in the case of a method claim, the element is
recited using the phrase “step for.”

The invention claimed is:
1. A method of modifying behavior of a computing device,
comprising:
receiving at a computing device, a message transmitted by
a server while the computing device is executing an
application, wherein the computing device is exhibiting
a first behavior while under control of the application;

responsive to the message, changing a first implementation
pointer related to the application by replacing a first
address stored in the implementation pointer with a sec-
ond address, wherein the second address corresponds to
a code block maintained in a library of modules on the
computing device, and wherein changing the firstimple-
mentation pointer modifies the first behavior; and

storing the first address in a second implementation
pointer, wherein the first implementation pointer is iden-
tified by a first function selector and the second imple-
mentation pointer is identified by a second function
selector,

wherein an address is stored in the implementation pointer

during loading of the application, and the first address
corresponds to a target function that is linked to the
application,

wherein invoking the first function selector after replacing

the first address with the second address in the first
implementation pointer causes the computing device to
execute the code block, and

wherein executing the code block includes invoking the

second function selector such that the computing device
is caused to execute the target function after execution of
the code block.

2. The method of claim 1, wherein the computing device
exhibits a second behavior different from the first behavior
after replacing the first address with the second address in the
first implementation pointer.

3. The method of claim 2, wherein the first behavior and the
second behavior relate to a user experience associated with
the computing device.

4. The method of claim 1, wherein the first behavior of the
application relates to a menu operation of the computing
device.

5. The method of claim 1, wherein changing the first imple-
mentation pointer modifies a sequence of operation of the
computing device.

6. The method of claim 1, wherein changing the first imple-
mentation pointer modifies a menu layout.

US 9,118,679 B2

15

7. The method of claim 1, wherein changing the first imple-
mentation pointer modifies a set of operational preferences
associated with the computing device.

8. An apparatus comprising:

means for receiving at the apparatus, a message transmitted

by a server while the apparatus is executing an applica-
tion, wherein the apparatus exhibits a first behavior
while under control of the application;

means for changing a first implementation pointer related

to the application in response to the message, wherein
the means for changing the first implementation pointer
is configured to replace a first address stored in the
implementation pointer with a second address, wherein
the second address corresponds to a code block main-
tained in a library of modules on the apparatus, and
wherein changing the first implementation pointer
modifies the first behavior; and

means for storing the first address in a second implemen-

tation pointer, wherein the first implementation pointer
is identified by a first function selector and the second
implementation pointer is identified by a second func-
tion selector,

wherein an address is stored in the implementation pointer

during loading of the application, and the first address
corresponds to a target function that is linked to the
application,

wherein invoking the first function selector after replacing

the first address with the second address in the first
implementation pointer causes the apparatus to execute
the code block, and

wherein executing the code block includes invoking the

second function selector such that the apparatus is
caused to execute the target function after execution of
the code block.

9. The apparatus of claim 8, wherein the apparatus exhibits
a second behavior different from the first behavior after
replacing the first address with the second address in the first
implementation pointer.

10. The apparatus of claim 9, wherein the first behavior and
the second behavior relate to a user experience associated
with the apparatus.

11. The apparatus of claim 8, wherein the first behavior of
the application relates to a menu operation of the apparatus.

12. The apparatus of claim 8, wherein a sequence of opera-
tion of the apparatus is modified after the first implementation
pointer is changed.

13. The apparatus of claim 8, wherein a menu layout is
modified after the first implementation pointer is changed.

14. The apparatus of claim 8, wherein a set of operational
preferences associated with the apparatus is modified after
the first implementation pointer is changed.

25

40

45

50

16

15. A non-transitory computer-readable medium compris-
ing code for: receiving at a computing device, a message
transmitted by a server while the computing device is execut-
ing an application, wherein the computing device is exhibit-
ing a first behavior while under control of the application;
responsive to the message, changing a first implementation
pointer related to the application by replacing a first
address stored in the implementation pointer with a sec-
ond address, wherein the second address corresponds to
a code block maintained in a library of modules on the
computing device, and wherein changing the firstimple-
mentation pointer modifies the first behavior; and

storing the first address in a second implementation
pointer, wherein the first implementation pointer is iden-
tified by a first function selector and the second imple-
mentation pointer is identified by a second function
selector,

wherein an address is stored in the implementation pointer

during loading of the application, and the first address
corresponds to a target function that is linked to the
application,

wherein invoking the first function selector after replacing

the first address with the second address in the first
implementation pointer causes the computing device to
execute the code block, and

wherein executing the code block includes invoking the

second function selector such that the computing device
is caused to execute the target function after execution of
the code block.

16. The computer-readable medium of claim 15, wherein
the computing device exhibits a second behavior different
from the first behavior after replacing the first address with
the second address in the first implementation pointer,
wherein the first behavior and the second behavior relate to a
user experience associated with the computing device.

17. The computer-readable medium of claim 15, wherein
the first behavior of the application relates to a menu opera-
tion of the computing device.

18. The computer-readable medium of claim 15, wherein a
sequence of operation of the computing device is modified
after the first implementation pointer is changed.

19. The computer-readable medium of claim 15, wherein a
menu layout is modified after the first implementation pointer
is changed.

20. The computer-readable medium of claim 15, wherein a
set of operational preferences associated with the computing
device is modified after the first implementation pointer is
changed.

